In a given grid, each cell can have one of three values:
the value 0 representing an empty cell; the value 1 representing a fresh orange; the value 2 representing a rotten orange. Every minute, any fresh orange that is adjacent (4-directionally) to a rotten orange becomes rotten.
Return the minimum number of minutes that must elapse until no cell has a fresh orange. If this is impossible, return -1 instead.
Example 1:
Input: [[2,1,1],[1,1,0],[0,1,1]] Output: 4 Example 2:
Input: [[2,1,1],[0,1,1],[1,0,1]] Output: -1 Explanation: The orange in the bottom left corner (row 2, column 0) is never rotten, because rotting only happens 4-directionally. Example 3:
Input: [[0,2]] Output: 0 Explanation: Since there are already no fresh oranges at minute 0, the answer is just 0.
Note:
1 <= grid.length <= 10 1 <= grid[0].length <= 10 grid[i][j] is only 0, 1, or 2.
classSolution { public: intorangesRotting(vector<vector<int>>& grid){ int m = grid.size(), n = grid[0].size(), time = 0; int last = 0; for (int i = 0; i < m; i++) for (int j = 0; j < n; j++) if (grid[i][j] == 1) last++; int movi[4] = {0, -1, 0, 1}; int movj[4] = {-1, 0, 1, 0}; queue<pair<int, int> > q;
while (true) { for (int i = 0; i < m; i++) for (int j = 0; j < n; j++) if (grid[i][j] == 2) q.push(make_pair(i, j)); int cur = 0; while (!q.empty()) { pair<int, int> temp = q.front(); q.pop(); int loci = temp.first, locj = temp.second; for (int i = 0; i < 4; i++) if (loci + movi[i] >= 0 && loci + movi[i] < m && locj + movj[i] >= 0 && locj + movj[i] < n && grid[loci + movi[i]][locj + movj[i]] == 1) grid[loci + movi[i]][locj + movj[i]] = 2; }
for (int i = 0; i < m; i++) for (int j = 0; j < n; j++) if (grid[i][j] == 1) cur++; if (cur != last) { time++; last = cur; } else break; }