0%

72.Edit Distance

框架

1
2
3
4
5
6
class Solution {
public:
int minDistance(string word1, string word2) {

}
};

1. dp

dp[i][j]代表word1[0~i]与word2[0~j]部分需要的最少的操作数。
dp[i][j]代表word1的前i个字符和word2的前j个字符部分需要的最少操作数。(这样要简单得多)
状态转移方程为:
dp[i][j] = dp[i - 1][j - 1], 当word1[i - 1] == word2[j - 1]时。
dp[i][j] = min(dp[i - 1][j - 1], dp[i - 1][j], dp[i][j - 1]) + 1, 当word1[i - 1] != word2[j - 1]时。
上述情况需要由三种状态转移而来,分别是:修改,删除word1[i-1],添加word2[j-1]。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
class Solution {
public:
int minDistance(string word1, string word2) {
int n1 = word1.length(), n2 = word2.length();
if (n1 == 0 || n2 == 0)
return n1 + n2;

int **dp = new int*[n1 + 1];
for (int i = 0; i < n1 + 1; i++)
dp[i] = new int[n2 + 1]{0};

for (int i = 0; i <= n1; i++)
dp[i][0] = i;
for (int i = 0; i <= n2; i++)
dp[0][i] = i;

for (int i = 1; i <= n1; i++) {
for (int j = 1; j <= n2; j++) {
if (word1[i - 1] == word2[j - 1])
dp[i][j] = dp[i - 1][j - 1];
else {
int temp = min(dp[i - 1][j], dp[i][j - 1]);
dp[i][j] = min(temp, dp[i - 1][j - 1]) + 1;
}
}
}

int ans = dp[n1][n2];
for (int i = 0; i < n1 + 1; i++)
delete []dp[i];
delete []dp;
return ans;
}
};